

What you (probably) don't know about SOFIA

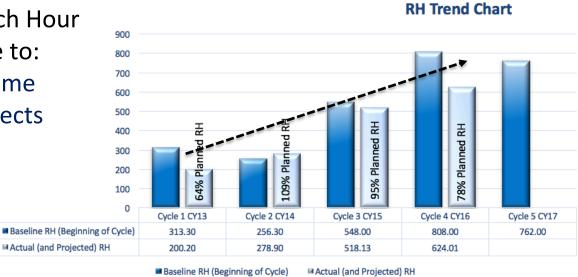
23 March 2017

Harold W Yorke

Director, SOFIA Science Mission Operations

Setting the Stage

- SOFIA is not a space mission
 - Hardware repairs & updates are in principal possible on a relatively short time scale
 - New instruments can be added to address current relevant science questions
 - Several improvements to SOFIA operations since
 prime mission start 2014 have increased efficiency
 - SOFIA yesterday < SOFIA today < SOFIA tomorrow</p>
- One goal of this workshop is to increase awareness of NASA's upcoming ROSES (step 1) call for the next SOFIA instrument(s)


SOFIA Operational Capacity Ramping Up!

- Program flight plans approaching full ops levels in Cycle 4 & 5 (dark bars)
- Program demonstrating increase in annual science flight execution and annual Research Hours (light bars)

- Planned Cycle 5 Research Hour estimate is reduced due to:
 - Low HAWC+ hold time (~5.5 hrs) which affects ~25% of Cycle 5
 - New upGREAT commissioning requirements

Yorke: SOFIA

Actual (and Projected) RH

SOFIA's Longevity?

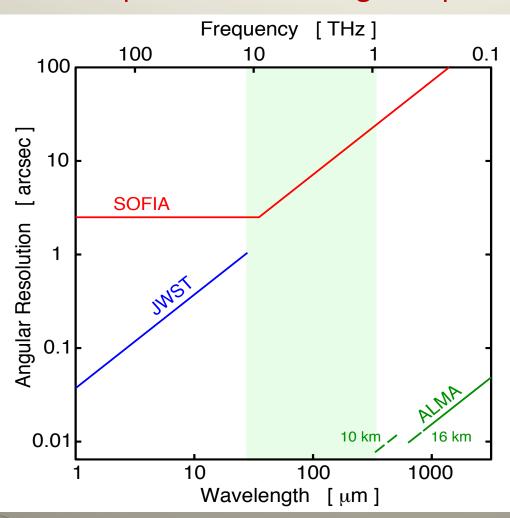
- SOFIA's prime mission is defined as five years from the end of the fiscal year during which SOFIA entered Phase E (i.e. 2014)
 - The prime mission phase ends September 30, 2019
- Long term plans for sustainment of the observatory shall preserve the capability for 20 years of operations
 - i.e. through May 2034
 - Continuation of mission depends on outcome of triennial Senior Reviews (required of all NASA missions)
- SOFIA is currently 40+ years old
 - SOFIA project has cannibalized several 747-SPs for spare parts (e.g. 12 jet engines on hand)

Cycle 5: SOFIA is operating at 100%

- 21 out of 21 planned SOFIA flights completed in Cycle 5
 - One contingency flight exercised after faulty smoke detector caused flight cancellation
- High number of contingency flights included in Cycle 5 plan: 20
 - Used if science flight has to be cancelled
 - Strategically placed in calendar to optimize utility
- Spare parts on hand should further reduce down times
 - A spare jet engine for SOFIA will be kept in New Zealand

Cycle 6: Further Optimizations Considered

- Multiple deployments to New Zealand with single instrument during period April - September
 - New Zealand offers greater flexibility for flight plans (fewer restricted zones; mostly over water)
 - New Zealand winter offers low water vapor (< 10 μm)
 - New Zealand offers access to Galactic Center and Magellanic Clouds
- Increased flight cadence: continuous 7 flights/week
- Quicker instrument swaps: 36 hours, instead of 3 days
- Miscellaneous optimizations of available time in air to increase time on science targets



SOFIA is important for FIR Science

SOFIA spans the Wavelength Gap between JWST and ALMA

JWST will offer unprecedented resolution and sensitivity from long-wavelength (orange-red) visible light to the mid-infrared (0.6 to 28 µm).

ALMA offers ~0.01 arcsecond resolution in its highest frequency bands. Band 10 (planned) will extend to 950 GHz (≈ 320 µm).

SOFIA is the only observatory that currently operates in 28-320 μ m wavelength range.

There is great science potential for observing in ALMA-JWST gap.

Where is SOFIA's "Sweet Spot"?

- SOFIA is the only observatory in 28 μm 320 μm range
- With its warm optics (~220K) SOFIA sensitivity is limited
 - 220K black body emissivity peaks at ~18μm
 - Optics, support structure, atmosphere contribute to background
 - Chop between target & empty sky
 - Subtract two large numbers for signal
 - Number statistics limit theoretical sensitivity
- Alternatively, reduce background radiation $F_v\Delta v$ by reducing bandwidth $\Delta v =>$ high resolution spectroscopy
 - e.g. GREAT (heterodyne), EXES, HIRMES
 - Detailed studies of emission and absorption lines
 - Emission line maps

- GREAT (German REceiver for Astronomy at Terahertz Frequencies)
 - PI class instrument (Rolf Güsten)
 - High resolution spectra (up to R=10⁸)
 - Several frequency windows in the 1.5 5 THz range $(60\mu m 200\mu m)$
 - Diffraction limited (14" at 158 μm)
 - Mapping speed of C+ line 50x faster than Herschel-HIFI due to multi-pixel array and improved noise temperature of receiver
 - The future: LFA-HFA (with dual cryocooler system),
 4GREAT, M band, tbd additional bands

- EXES (Echelon-Cross- Echelle Spectrograph)
 - PI class instrument (Matt Richter)
 - Operates in the 4.5 28.3 μm wavelength region
 - High (R ≈ 50,000 100,000), medium (R ≈ 5000 20,000) and low (R ≈ 1000 3000) spectral resolution
 - Not diffraction limited; reduced throughput to spectrometer because of small slit width wrt beam
 - JWST-MIRI: diffraction-limited, $5-28.5~\mu m$, 1. photometric imaging, 2. coronagraphy, 3. single-source low-spectral resolving power (R ~ 100) spectroscopy, and 4. medium-resolving power (R ~ 1500 to 3500) integral field spectroscopy
 - EXES' future niche: high resolution mid-IR spectroscopy, bright sources

- FORCAST (Faint Object infraRed CAmera for the SOFIA Telescope)
 - Dual-channel mid-infrared camera with 256x256 pixel detectors
 - Low resolution spectra R=200 through grisms
 - Wavelength range: 5μm 40μm
 - Diffraction limited only at longest wavelengths
 - FORCAST's Future: JWST-MIRI covers 5μm 28.5μm
 - HAWC+ covers 40 μm 300 μm without spectroscopy
 - FIFI-LS covers 50 μ m 200 μ m with spectroscopy
 - HIRMES will cover 25 μ m 122 μ m with spectroscopy

- FIFI-LS (Far Infrared Field-Imaging Line Spectrometer)
 - Dual integral field (5x5) spectrometers
 - short wavelength spectrometer (blue channel) operates at wavelengths between 50 μm and 125 μm
 - long wavelength spectrometer (red channel) covers the range from 105 μm up to 200 μm
 - Each channel has R~1000 2000
 - Pixel size limited (12" for red channel; 6" for blue)
 - Unlike Herschel-PACS, FIFI-LS has two gratings and can observe two wavelength ranges simultaneously and independently of each other
 - FIFI-LS' Future: FIFI-LS provides a unique capability in SOFIA's wavelength sweet spot; improvements via MKIDs?

- FLITECAM (First Light Infrared TEst CAMera)
 - $-1.0-5.5 \mu m$ photometer & medium resolution spectrometer
 - Set of filters for imaging
 - One filter wheel for J, H, K, L and M
 - Second filter wheel holds a selection of narrow-band imaging filters including Pa- α , Pa- α continuum, 3.07 μ m H₂O ice, 3.3 μ m PAH, L-narrow and M-narrow
 - Additional sorting filters for grism waveband selection
 - Three grisms provide medium resolution (R ≈ 1500)
 spectra over entire wavelength range
 - Future: FLITECAM will not be offered in Cycle 6 CfP

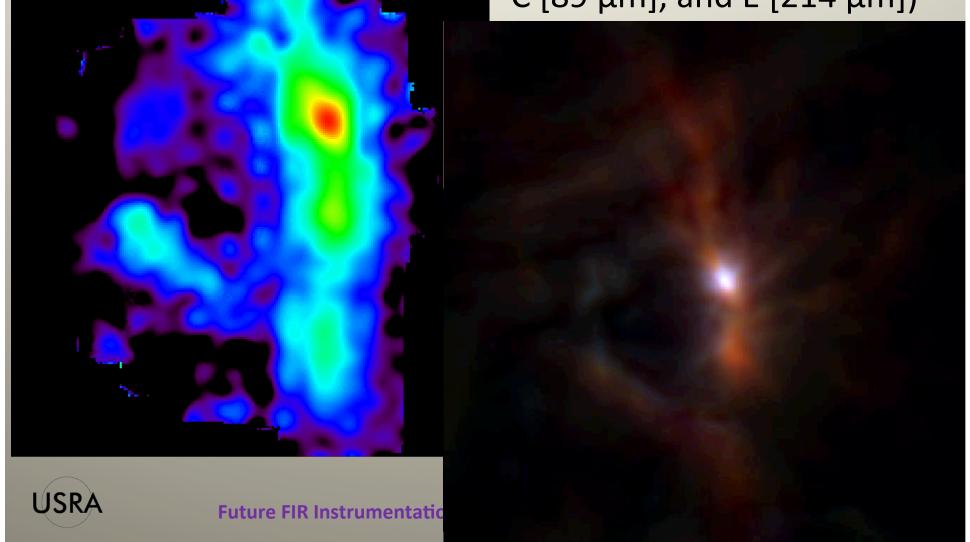
- HIPO (High Speed Imaging Photometer for Occultations)
 - Filter set includes the Johnson (UBVRI) and Sloan
 (u'g'r'l'z') filters as well as a filter for methane at 890nm
 - Although not offered in Cycle 5 Call for Proposals, HIPO will be used in the FLIPO configuration for the Triton occultation event in October 2017
 - Many of HIPO's capabilities are covered by the (visible light) focal plane imager, FPI+
 - Future: HIPO will not be offered in Cycle 6 CfP; HIPO useful to SOFIA for diagnostics (Shack-Hartmann)

- FPI+ (Focal Plane Imager-plus)
 - Standard tracking camera for the SOFIA telescope with 1024x1024 pixel science grade CCD sensor
 - It is a fast frame-rate imaging photometer in the 360-1100 nm wavelength range
 - Always available simultaneously with other instruments
 - Five Sloan Digital Sky Survey filters u', g', r', i', z' and a
 Schott RG1000 NIR cut on filter are available
 - Future: Many potential enhancements to optimize its use as occultation science instrument

- HAWC+ (High-resolution Airborne Wideband Camera-plus)
 - Diffraction-limited imaging of polarized and unpolarized light in five broad bands 40 μm 300 μm
 - Will be offered in Cycle 6 CfP with caveats
 - HAWC+'s Future: Unique capabilities: Far-IR imaging and polarization

- HIRMES (High Resolution Mid-InfrarEd Spectrometer)
 - Wavelength range: 25μm 122μm
 - Diffraction limited (or nearly so) over entire range
 - Variety of observing modes
 - Spectroscopy R=600 (low) 19,000 (mid) 100,000 (high)
 - Imaging spectroscopy mode: R ~ 2000 for a few selected emission lines
 - TES bolometers @ 0.1 K are background limited
 - >90% quantum efficiency over reasonably broad bands
 - Future: First light in 2019

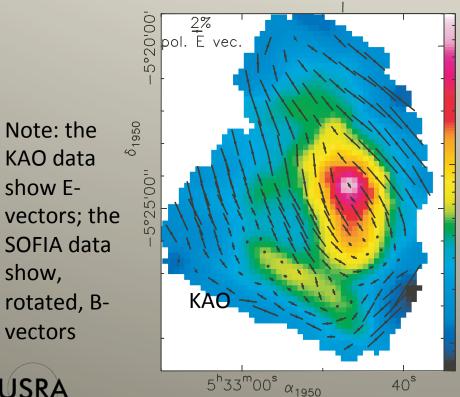
- NextGen (or Gen4)
 - Wavelength range and all other capabilities: tbd
 - Mass, power, data rate: see "Investigators Handbook"
 - Size/shape: has to get through the door and make the turn at the spiral staircase
 - NASA is planning a ROSES call in 2017

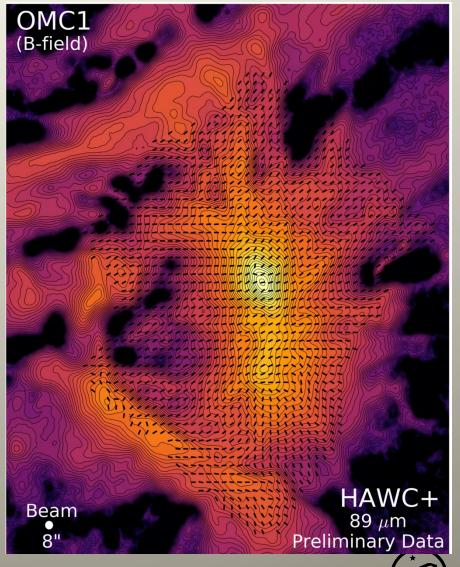


Orion observed with FIFI-LS and HAWC+

FIFI-LS (158 μm)

HAWC+ (Bands A [53 μm], C [89 μ m], and E [214 μ m])





HAWC+ Science Highlight

Dust-induced polarization traces structure and strength of the interstellar magnetic field, which plays an important role in star formation.

Ask not what SOFIA can do for you, but what you can do for SOFIA

- It is time for every SOFIA afficionado to exercise his/her duty to vote.
- For the upcoming Senior Review of SOFIA, three metrics will be important: published papers, proposals for observing time, quality of proposals for the Gen4 instrument call
- If continuing SOFIA beyond 2019 is important to you, we are asking you to vote with your feet, namely by writing SOFIA papers, proposing to Cycle 6, proposing a new instrument or significant improvement to an existing one.
- Lots of papers need to be published asap, certainly before December 2017: "Vote early and vote often"

Thank You

Future FIR Instrumentation Yorke: SOFIA 23 March 2017

